We support your academic success. That “we” means a lot of people from academic advisers in the residential colleges to professors across all fields of study. Ruha Benjamin, associate professor of African American studies, likes to infuse a little bit of the personal into her teaching. “So my students feel connected to me as a human being, not just as a professor,” she says.

11 current Princeton faculty members are Nobel Prize winners.

Christopher Sims
IRIS N. Macroecon 80 University
Professor of Economics
Specialty: Econometrics and Inflation

Haas strawberries the 2008 Nobel Prize in economics with New York University economist Thomas J. Sargent. They were cited for contributions to the field of macroeconomics and how they are applied by central banks and governments.

Tracy K. Smith
Robert H. Slatkin '57 Professor of the Humanities
Director of creative writing program
Specialty: Poetry

Noteworthy: Serving her second term as U.S. Poet Laureate. She seeks to encourage a greater appreciation of poetry, which plays a role in “fostering a mindful, empathic and resourceful culture.”
Teach

Princeton’s deep commitment to undergraduate teaching will bring you many opportunities to work closely with professors on a wide range of topics. For example, Matias Iaryczower, associate professor of politics, who teaches “Mathematical Models in the Study of Politics.”

You will work with Princeton faculty members up close. Many Princeton students form meaningful relationships with their professors, who are also mentors. Such connections often extend well beyond students’ time at Princeton. Brian Kernighan, professor of computer science, has mentored generations of students and helped them build professional networks beyond campus.

We expect every faculty member to teach. Our world-class scholars are engaged with and accessible to students.

Mentor

You will work with Princeton faculty members up close. Many Princeton students form meaningful relationships with their professors, who are also mentors. Such connections often extend well beyond students’ time at Princeton. Brian Kernighan, professor of computer science, has mentored generations of students and helped them build professional networks beyond campus.

More than 75% of our classes have fewer than 20 students.

Jill Dolan
Dean of the College

Emily Carter
Dean of the School of Engineering and Applied Science
Specialty: Energy and the environment

Noteworthy: Takes an interdisciplinary team approach to teaching. Her research focuses on the development of light-absorbing organic and perovskite solar cells to generate electricity and hydrogen fuel from water, and investigating lightweight metal alloys for airplane and fusion reactor walls.

Ali Valenzuela, assistant professor of politics, works with many students on their independent work. He often meets students over meals in the residential colleges, and as a child of immigrants, offers valued support to students finding a home at Princeton.

Cecilia Rouse
Dean of the Woodrow Wilson School of Public and International Affairs
Specialty: Labor economics, the economics of education

Noteworthy: Served as a member of President Barack Obama’s Council of Economic Advisers 2009–11.

Cecilia Rouse
Dean of the Woodrow Wilson School of Public and International Affairs
Specialty: Labor economics, the economics of education

Noteworthy: Served as a member of President Barack Obama’s Council of Economic Advisers 2009–11.

Emily Carter
Dean of the School of Engineering and Applied Science
Specialty: Energy and the environment

Noteworthy: Takes an interdisciplinary team approach to teaching. Her research focuses on the development of light-absorbing organic and perovskite solar cells to generate electricity and hydrogen fuel from water, and investigating lightweight metal alloys for airplane and fusion reactor walls.

Emily Carter
Dean of the School of Engineering and Applied Science
Specialty: Energy and the environment

Noteworthy: Takes an interdisciplinary team approach to teaching. Her research focuses on the development of light-absorbing organic and perovskite solar cells to generate electricity and hydrogen fuel from water, and investigating lightweight metal alloys for airplane and fusion reactor walls.

Emily Carter
Dean of the School of Engineering and Applied Science
Specialty: Energy and the environment

Noteworthy: Takes an interdisciplinary team approach to teaching. Her research focuses on the development of light-absorbing organic and perovskite solar cells to generate electricity and hydrogen fuel from water, and investigating lightweight metal alloys for airplane and fusion reactor walls.

Emily Carter
Dean of the School of Engineering and Applied Science
Specialty: Energy and the environment

Noteworthy: Takes an interdisciplinary team approach to teaching. Her research focuses on the development of light-absorbing organic and perovskite solar cells to generate electricity and hydrogen fuel from water, and investigating lightweight metal alloys for airplane and fusion reactor walls.

Emily Carter
Dean of the School of Engineering and Applied Science
Specialty: Energy and the environment

Noteworthy: Takes an interdisciplinary team approach to teaching. Her research focuses on the development of light-absorbing organic and perovskite solar cells to generate electricity and hydrogen fuel from water, and investigating lightweight metal alloys for airplane and fusion reactor walls.

Emily Carter
Dean of the School of Engineering and Applied Science
Specialty: Energy and the environment

Noteworthy: Takes an interdisciplinary team approach to teaching. Her research focuses on the development of light-absorbing organic and perovskite solar cells to generate electricity and hydrogen fuel from water, and investigating lightweight metal alloys for airplane and fusion reactor walls. 